[ad_1]
Pelka, Ok. et al. Spatially organized multicellular immune hubs in human colorectal most cancers. Cell 184, 4734–4752.e4720 (2021).
Lin, J. R. et al. Multiplexed 3D atlas of state transitions and immune interplay in colorectal most cancers. Cell 186, 363–381.e319 (2023).
Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon most cancers metastasis. Nature 554, 538–543 (2018).
Shankaran, V. et al. IFNγ and lymphocytes forestall main tumour improvement and form tumour immunogenicity. Nature 410, 1107–1111 (2001).
Koebel, C. M. et al. Adaptive immunity maintains occult most cancers in an equilibrium state. Nature 450, 903–907 (2007).
Beyaz, S. et al. Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell 28, 1922–1935 e1925 (2021).
Roper, J. et al. In vivo genome enhancing and organoid transplantation fashions of colorectal most cancers and metastasis. Nat. Biotechnol. 35, 569–576 (2017).
Roper, J. et al. Colonoscopy-based colorectal most cancers modeling in mice with CRISPR–Cas9 genome enhancing and organoid transplantation. Nat. Protoc. 13, 217–234 (2018).
Barker, N. et al. Crypt stem cells because the cells-of-origin of intestinal most cancers. Nature 457, 608–611 (2009).
Goto, N. et al. Lymphatics and fibroblasts help intestinal stem cells in homeostasis and damage. Cell Stem Cell 29, 1246–1261 e1246 (2022).
Spence, J. R. et al. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev. Cell 17, 62–74 (2009).
Shivdasani, R. A. Molecular regulation of vertebrate early endoderm improvement. Dev. Biol. 249, 191–203 (2002).
Kanai-Azuma, M. et al. Depletion of definitive intestine endoderm in Sox17-null mutant mice. Growth 129, 2367–2379 (2002).
Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell exercise in mouse intestinal adenomas. Science 337, 730–735 (2012).
The Most cancers Genome Atlas Community. Complete molecular characterization of human colon and rectal most cancers. Nature 487, 330–337 (2012).
Westcott, P. M. Ok. et al. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal most cancers. Nat. Most cancers 2, 1071–1085 (2021).
Heide, T. et al. The co-evolution of the genome and epigenome in colorectal most cancers. Nature 611, 733–743 (2022).
Fordham, R. P. et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after damage. Cell Stem Cell 13, 734–744 (2013).
Mustata, R. C. et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 5, 421–432 (2013).
Nusse, Y. M. et al. Parasitic helminths induce fetal-like reversion within the intestinal stem cell area of interest. Nature 559, 109–113 (2018).
Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite instable colon most cancers is balanced by a number of counter-inhibitory checkpoints. Most cancers Discov. 5, 43–51 (2015).
Beltra, J. C. et al. Developmental relationships of 4 exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic panorama management mechanisms. Immunity 52, 825–841.e828 (2020).
Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor management and reply to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).
Khan, O. et al. TOX transcriptionally and epigenetically packages CD8+ T cell exhaustion. Nature 571, 211–218 (2019).
Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to obtain essential survival indicators within the tumor microenvironment. Cell 184, 4512–4530.e4522 (2021).
Ikeda, H., Outdated, L. J. & Schreiber, R. D. The roles of IFNγ in safety in opposition to tumor improvement and most cancers immunoediting. Cytokine Progress Issue Rev. 13, 95–109 (2002).
Pan, D. et al. A serious chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).
Miao, D. et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable strong tumors. Nat. Genet. 50, 1271–1281 (2018).
Reschke, R. & Gajewski, T. F. CXCL9 and CXCL10 deliver the warmth to tumors. Sci. Immunol. 7, eabq6509 (2022).
Fearon, E. R. & Vogelstein, B. A genetic mannequin for colorectal tumorigenesis. Cell 61, 759–767 (1990).
Shimokawa, M. et al. Visualization and concentrating on of LGR5+ human colon most cancers stem cells. Nature 545, 187–192 (2017).
de Sousa e Melo, F. et al. A definite function for Lgr5+ stem cells in main and metastatic colon most cancers. Nature 543, 676–680 (2017).
Fumagalli, A. et al. Plasticity of Lgr5-negative most cancers cells drives metastasis in colorectal most cancers. Cell Stem Cell 26, 569–578.e567 (2020).
He, S., Kim, I., Lim, M. S. & Morrison, S. J. Sox17 expression confers self-renewal potential and fetal stem cell traits upon grownup hematopoietic progenitors. Genes Dev. 25, 1613–1627 (2011).
Kim, I., Saunders, T. L. & Morrison, S. J. Sox17 dependence distinguishes the transcriptional regulation of fetal from grownup hematopoietic stem cells. Cell 130, 470–483 (2007).
Agudo, J. et al. Quiescent tissue stem cells evade immune surveillance. Immunity 48, 271–285 e275 (2018).
Drukker, M. et al. Human embryonic stem cells and their differentiated derivatives are much less inclined to immune rejection than grownup cells. Stem Cells 24, 221–229 (2006).
Li, L. et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells 22, 448–456 (2004).
Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a most cancers immunotherapy goal. Nature 547, 413–418 (2017).
Patel, S. J. et al. Identification of important genes for most cancers immunotherapy. Nature 548, 537–542 (2017).
Gao, J. et al. Lack of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 remedy. Cell 167, 397–404.e399 (2016).
Zaretsky, J. M. et al. Mutations Related to acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).
Baldominos, P. et al. Quiescent most cancers cells resist T cell assault by forming an immunosuppressive area of interest. Cell 185, 1694–1708.e1619 (2022).
Zhang, W. et al. Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal most cancers. Most cancers Res. 68, 2764–2772 (2008).
Wang, L. et al. SOX17 antagonizes the WNT signaling pathway and is epigenetically inactivated in clear-cell renal cell carcinoma. OncoTargets Ther. 14, 3383–3394 (2021).
Wang, M. et al. Loss-of-function mutations of SOX17 result in YAP/TEAD activation-dependent malignant transformation in endometrial most cancers. Oncogene 42, 322–334 (2023).
Delgiorno, Ok. E. et al. Identification and manipulation of biliary metaplasia in pancreatic tumors. Gastroenterology 146, 233–244.e235 (2014).
Tan, D. S., Holzner, M., Weng, M., Srivastava, Y. & Jauch, R. SOX17 in mobile reprogramming and most cancers. Semin. Most cancers Biol. 67, 65–73 (2020).
Barker, N. et al. Identification of stem cells in small gut and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).
el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination within the intestine epithelium. Genesis 39, 186–193 (2004).
Kuraguchi, M. et al. Adenomatous polyposis coli (APC) is required for regular improvement of pores and skin and thymus. PLoS Genet. 2, e146 (2006).
Johnson, L. et al. Somatic activation of the Ok-ras oncogene causes early onset lung most cancers in mice. Nature 410, 1111–1116 (2001).
Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb within the exterior granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).
Hogquist, Ok. A. et al. T cell receptor antagonist peptides induce optimistic choice. Cell 76, 17–27 (1994).
Chu, V. T. et al. Environment friendly era of Rosa26 knock-in mice utilizing CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol. 16, 4 (2016).
Madisen, L. et al. A sturdy and high-throughput Cre reporting and characterization system for the entire mouse mind. Nat. Neurosci. 13, 133–140 (2010).
Hao, Z. & Rajewsky, Ok. Homeostasis of peripheral B cells within the absence of B cell inflow from the bone marrow. J. Exp. Med. 194, 1151–1164 (2001).
Dow, L. E. et al. Apc restoration promotes mobile differentiation and reestablishes crypt homeostasis in colorectal most cancers. Cell 161, 1539–1552 (2015).
Boutin, A. T. et al. Oncogenic Kras drives invasion and maintains metastases in colorectal most cancers. Genes Dev. 31, 370–382 (2017).
Fujii, M., Matano, M., Nanki, Ok. & Sato, T. Environment friendly genetic engineering of human intestinal organoids utilizing electroporation. Nat. Protoc. 10, 1474–1485 (2015).
Miyoshi, H. & Stappenbeck, T. S. In vitro growth and genetic modification of gastrointestinal stem cells in spheroid tradition. Nat. Protoc. 8, 2471–2482 (2013).
Schwank, G. & Clevers, H. CRISPR/Cas9-mediated genome enhancing of mouse small intestinal organoids. Strategies Mol. Biol. 1422, 3–11 (2016).
Matano, M. et al. Modeling colorectal most cancers utilizing CRISPR–Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).
Drost, J. et al. Sequential most cancers mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).
Koo, B. Ok. et al. Managed gene expression in main Lgr5 organoid cultures. Nat. Strategies 9, 81–83 (2011).
Pelossof, R. et al. Prediction of potent shRNAs with a sequential classification algorithm. Nat. Biotechnol. 35, 350–353 (2017).
Dow, L. E. et al. A pipeline for the era of shRNA transgenic mice. Nat. Protoc. 7, 374–393 (2012).
Fellmann, C. et al. An optimized microRNA spine for efficient single-copy RNAi. Cell Rep. 5, 1704–1713 (2013).
Mana, M. D. et al. Excessive-fat diet-activated fatty acid oxidation mediates intestinal stemness and tumorigenicity. Cell Rep. 35, 109212 (2021).
Cheng, C. W. et al. Ketone physique signaling mediates intestinal stem cell homeostasis and adaptation to weight-reduction plan. Cell 178, 1115–1131.e1115 (2019).
Beyaz, S. et al. Excessive-fat weight-reduction plan enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).
Sheridan, B. S. & Lefrancois, L. Isolation of mouse lymphocytes from small gut tissues. Curr. Protoc. Immunol. 99, 3.19.1–3.19.11 (2012).
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a technique for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.21–21.29.29 (2015).
Skene, P. J., Henikoff, J. G. & Henikoff, S. Focused in situ genome-wide profiling with excessive effectivity for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of brief DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
Li, B. & Dewey, C. N. RSEM: correct transcript quantification from RNA-seq knowledge with or with out a reference genome. BMC Bioinform. 12, 323 (2011).
Bullard, J. H., Purdom, E., Hansen, Ok. D. & Dudoit, S. Analysis of statistical strategies for normalization and differential expression in mRNA-seq experiments. BMC Bioinform. 11, 94 (2010).
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon gives quick and bias-aware quantification of transcript expression. Nat. Strategies 14, 417–419 (2017).
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates enhance gene-level inferences. F1000Res 4, 1521 (2015).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).
Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence depend knowledge: eradicating the noise and preserving massive variations. Bioinformatics 35, 2084–2092 (2019).
Mootha, V. Ok. et al. PGC-1α-responsive genes concerned in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
Han, T. et al. Lineage reversion drives WNT independence in intestinal most cancers. Most cancers Discov. 10, 1590–1609 (2020).
Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for deciphering genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Figuring out ChIP-seq enrichment utilizing MACS. Nat. Protoc. 7, 1728–1740 (2012).
Quinlan, A. R. & Corridor, I. M. BEDTools: a versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842 (2010).
Wang, Q. et al. Exploring epigenomic datasets by ChIPseeker. Curr. Protoc. 2, e585 (2022).
Heinz, S. et al. Easy combos of lineage-determining transcription elements prime cis-regulatory parts required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
Meers, M. P., Tenenbaum, D. & Henikoff, S. Peak calling by sparse enrichment evaluation for CUT&RUN chromatin profiling. Epigenetics Chromatin 12, 42 (2019).
Hao, Y. et al. Built-in evaluation of multimodal single-cell knowledge. Cell 184, 3573–3587.e3529 (2021).